Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Intelligent and Fuzzy Systems applied to Language & Knowledge Engineering
Guest editors: David Pinto, Vivek Kumar Singh, Aline Villavicencio, Philipp Mayr-Schlegel and Efstathios Stamatatos
Article type: Research Article
Authors: Garcia-Gorrostieta, Jesús Miguel*; | López-López, Aurelio
Affiliations: Department of Computational Sciences, National Institute of Astrophysics, Optics and Electronics, Tonantzintla, Puebla, México
Correspondence: [*] Corresponding author. Jesús Miguel Garcia-Gorrostieta, Department of Computational Sciences, National Institute of Astrophysics, Optics and Electronics, Puebla, México. Tel.: +52 2222663100; E-mail: jesusmiguelgarcia@inaoep.mx.
Abstract: Argumentation in academic writing is a challenging task required to communicate clear ideas. Exposed ideas have to be supported by reasoned arguments. Arguments are composed of components such as premises and conclusions. In this paper, we present an approach to classify argumentative components using language models and machine learning algorithms on a new corpus of academic theses and research proposals. We explore the use of lexical, syntactic, semantic and indicator features to tackle this task. We found that lexical features provide the best efficacy for the classification. For language models, the best features were syntactical. But our experiments showed that a document occurrence representation with unigrams achieved the best accuracy. We also tested the conclusions about the representation and classifier on theses according to their study level (undergraduate, master, and doctoral). We analyzed the information gain of features and found patterns that are part of argumentative markers.
Keywords: Computer-assisted argument analysis, academic writing, argumentation studies, argument components, annotated theses corpus
DOI: 10.3233/JIFS-169488
Journal: Journal of Intelligent & Fuzzy Systems, vol. 34, no. 5, pp. 3037-3047, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl