Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Intelligent and Fuzzy Systems applied to Language & Knowledge Engineering
Guest editors: David Pinto, Vivek Kumar Singh, Aline Villavicencio, Philipp Mayr-Schlegel and Efstathios Stamatatos
Article type: Research Article
Authors: Gambino, Omar Juáreza; b; * | Calvo, Hiramb
Affiliations: [a] Instituto Politécnico Nacional – ESCOM, Lindavista, G.A. Madero, Mexico City, Mexico | [b] Instituto Politécnico Nacional – CIC, J.D. Bátiz e/M.O. de Mendizábal, Mexico City, Mexico
Correspondence: [*] Corresponding author. Omar Juárez Gambino. E-mail: b150697@sagitario.cic.ipn.mx.
Abstract: Social networks users often post their opinion after reading a news article. By analyzing these responses, it is possible to find diverse emotions expressed in them. When several users react to an article, a distribution of these emotions is accumulated. Writers and publishers would benefit to have an estimation of how users will react to an article. This work proposes a method to predict the distribution of emotions that users would express in Twitter after reading a news article. More than one emotion can be expressed in responses, so that an approach of modeling this distribution as a supervised multi-target classification problem is followed. For this purpose, it was necessary to collect a corpus of Spanish news articles and their associated responses and a group of annotators tagged the emotions expressed in them. The use of this strategy allows to naturally model instances (news articles) that have more than one associated class (emotions expressed in responses). The predicted values are expressed in terms of the percentage of responses that triggered each specific emotion. The proposed method is evaluated by measuring the deviation of the predicted emotion distribution with regard to the annotated set of emotions, obtaining a precision above 90%. In addition to that, the proposed method was used in a foreign corpus in order to compare it with 10 state of the art methods. Results show that the proposed method performs better than 9 of these methods on this corpus.
Keywords: Social media emotion reaction, Twitter sentiment analysis, emotion distribution prediction, multi-target classification
DOI: 10.3233/JIFS-169471
Journal: Journal of Intelligent & Fuzzy Systems, vol. 34, no. 5, pp. 2837-2847, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl