Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy, Sushmita Mitra and Ljiljana Trajkovic
Article type: Research Article
Authors: Malhotra, Ruchikaa; * | Khanna, Meghaa; b
Affiliations: [a] Discipline of Software Engineering, Department of Computer Science & Engineering, Delhi Technological UniversityDelhi, India | [b] Sri Guru Gobind Singh College of Commerce, University of Delhi, Delhi, India
Correspondence: [*] Corresponding author. Ruchika Malhotra, Discipline of Software Engineering, Department of Computer Science & Engineering, Delhi Technological University, Delhi-110042, India. E-mails: ruchikamalhotra@dtu.ac.in, meghakhanna86@gmail.com.
Abstract: Determination of change prone classes is crucial in providing guidance to software practitioners for efficient allocation of limited resources and to develop favorable quality software products with optimum costs. Previous literature studies have proposed successful use of design metrics to predict classes which are more prone to change in an Object-Oriented (OO) software. However, the use of evolution-based metrics suite, which quantifies history of changes in a software, release by release should also be evaluated for effective prediction of change prone classes. Evolution-based metrics are representative of evolution characteristics of a class over all its previous releases and are important in order to understand progression and change-prone nature of a class. This study evaluates the use of evolution-based metrics when used in conjunction with OO metrics for prediction of classes which are change prone in nature. In order to empirically validate the results, the study uses two application packages of the Android software namely Contacts and Gallery2. The results indicate that evolution based metrics when used in conjunction with OO metrics are the best predictors of change prone classes. Furthermore, the study statistically evaluates the superiority of this combined metric suite for change proneness prediction.
Keywords: Change proneness, evolution-based metrics, empirical validation, machine learning techniques
DOI: 10.3233/JIFS-169468
Journal: Journal of Intelligent & Fuzzy Systems, vol. 34, no. 3, pp. 1755-1766, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl