Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy, Sushmita Mitra and Ljiljana Trajkovic
Article type: Research Article
Authors: Isaac, Meera Marya; * | Wilscy, M.b
Affiliations: [a] Department of Computer Science, University of Kerala, Kerala, India | [b] St. GITS, Kottukulam Hills, Pathamuttom, Kottayam, Kerala, India
Correspondence: [*] Corresponding author. Meera Mary Isaac, Department of Computer Science, University of Kerala, Kerala, India. Tel.: +91 9446516190; E-mail: meerathu@gmail.com.
Abstract: Today’s Image processing tools have matured to a level where its users can effortlessly modify or enhance the images according to their requirement. A misuse of such tools has created a necessity for authenticating images to ensure its correctness. Image Forensics deals with the study of different kinds of manipulation on images and their detection. Image forgery detection algorithms detect forgery related artifacts which can be distinguished using specific image properties. Texture-based features have been widely used to detect forgery induced texture variations in the images. In this paper, we propose Region and Texture combined features for Image Forgery Detection. The Region-based approaches like – Edge-based Region Detection, Saliency-based Region Detection, and Wavelet-based Region Detection are captured, and on these regions, the texture feature- Rotation invariant Co-occurrences among adjacent LBP (RiCoLBP) is applied. The features thus obtained are optimized using Non-Negative Matrix Factorization and fed to a Support Vector Machine (SVM) for classification. The method is extensively evaluated on three benchmark datasets for image forgery detection namely CASIA v1.0, CASIA v2.0 and CUISDE. The performance reveals improved detection accuracies when compared to the state-of-the-art methods in detecting forged and authentic images.
Keywords: Image forgery detection, edge-based features, Saliency, Wavelets, RiCLBP
DOI: 10.3233/JIFS-169461
Journal: Journal of Intelligent & Fuzzy Systems, vol. 34, no. 3, pp. 1679-1690, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl