Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy, Sushmita Mitra and Ljiljana Trajkovic
Article type: Research Article
Authors: Harikumar, Sandhya; * | Akhil, A.S.
Affiliations: Department of Computer Science and Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
Correspondence: [*] Corresponding author. Sandhya Harikumar, Department of Computer Science and Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India. E-mail: sandhyaharikumar@am.amrita.edu.
Abstract: High-dimensional data analysis is quite inevitable due to emerging technologies in various domains such as finance, healthcare, genomics and signal processing. Though data sets generated in these domains are high-dimensional, intrinsic dimensions that provide meaningful information are often much smaller. Conventionally, unsupervised clustering methods known as subspace clustering are utilized for finding clusters in different subspaces of high dimensional data, by identifying relevant features, irrespective of labels associated with each instance. Available label information, if incorporated in clustering algorithm, can bias the algorithm towards solutions more consistent with our knowledge, leading to improved cluster quality. Therefore, an Information Gain based Semi-supervised- subspace Clustering (IGSC) is proposed that identifies a subset of important attributes based on the known label for each data instance. The information about the labels associated with data sets is integrated with the search strategy for subspaces to leverage them into a model based clustering approach. Our experimentation on 13 real world labeled data sets proves the feasibility of IGSC and we validate the clusters obtained, using an improvised Davies Bouldin Index (DBI) for semi-supervised clusters.
Keywords: Subspace clustering, semi-supervised, information gain, entropy
DOI: 10.3233/JIFS-169456
Journal: Journal of Intelligent & Fuzzy Systems, vol. 34, no. 3, pp. 1619-1629, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl