Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft computing and intelligent systems: Tools, techniques and applications
Guest editors: Sabu M. Thampi and El-Sayed M. El-Alfy
Article type: Research Article
Authors: Sharma, Chhavi* | Bedi, Punam
Affiliations: Department of Computer Science, University of Delhi, Delhi, India
Correspondence: [*] Corresponding author. Chhavi Sharma, Department of Computer Science, University of Delhi, Delhi, India. Tel.: +91 11 27667591; Fax: +91 11 27662553; E-mail: csharma@cs.du.ac.in.
Abstract: With the enormous growth in the volume of online data, users are flooded with a gigantic amount of information. This has made the task of Recommender systems (RSs) even more engrossing. Research in RSs has been revolving around newer concepts like social factors, context of the user and the groups they belong to. This paper presents the design and development of a Community based Collaborative Filtering Recommender System (CCFRS). Louvain method of community detection has been applied to discover communities in the dataset. The method of generating recommendations is based on the proposed idea of Item Frequency-Inverse Community Frequency (IF-ICF) score of each item in the target user’s community. IF scores help finding the set of items which are unique to a particular community. ICF values are inversely proportional to the number of communities in which an item has been rated. It is used to calculate the uniqueness of the item across the communities. The IF-ICF scores of the items are further employed to find the prediction scores of items unseen by the user in order to present a set of top ‘n’ recommendations to the user. A prototype of the system is developed using Java and experimental analysis has been carried out for the domain of books.
Keywords: Recommender Systems (RSs), community detection, Louvain method, IF-ICF
DOI: 10.3233/JIFS-169242
Journal: Journal of Intelligent & Fuzzy Systems, vol. 32, no. 4, pp. 2987-2995, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl