Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: ICNC-FSKD 2015
Guest editors: Zheng Xiao and Kenli Li
Article type: Research Article
Authors: Zhan, Yu | Pan, Haiwei* | Xie, Xiaoqin | Zhang, Zhiqiang | Li, Wenbo
Affiliations: College of Computer Science and Technology, Harbin Engineering University, Harbin, Heilongjiang, China
Correspondence: [*] Corresponding author. Haiwei Pan, College of Computer Science and Technology, Harbin Engineering University, 21Building, NO. 145 nantong street, ZIP code 150001, Harbin, Heilongjiang, China. Tel./Fax: +86 451 82519406; E-mail: panhaiwei@hrbeu.edu.cn.
Abstract: The high incidence of brain tumor has increased significantly in recent years. It is becoming more and more concernful to discover knowledge through mining medical brain image to aid doctors’ diagnosis. Clustering medical images for Intelligent Decision Support is an important part in the field of medical image mining because there are several technical aspects which make this problem challenging. In this paper, we propose a medical brain image clustering method to find similar pathology images that can assist doctors to analyze the specific disease, discover its potential cause and make more accurate treatment. Firstly, this method represents medical brain image dataset as a weighted, undirected and complete graph. Secondly, this graph is sparsified so as to describe the similarity of medical images very well. Last but not the least, a graph entropy based clustering method for this sparsified graph is proposed to cluster these medical images. The experimental results show that this method can cluster medical images efficiently and run well in time complexity. The clustering results can better describe the similarity of medical images.
Keywords: Medical image, graph entropy, sparsification, clustering
DOI: 10.3233/JIFS-169032
Journal: Journal of Intelligent & Fuzzy Systems, vol. 31, no. 2, pp. 1029-1039, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl