Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: ICNC-FSKD 2015
Guest editors: Zheng Xiao and Kenli Li
Article type: Research Article
Authors: Imran, Mohammad* | Afzal, Muhammad Tanvir | Qadir, Muhammad Abdul
Affiliations: Department of Computer Science, Capital University of Science and Technology, Islamabad, Pakistan
Correspondence: [*] Corresponding author. Mohammad Imran, Department of Computer Science, Capital University of Science and Technology, Islamabad Expressway, Kahuta Road, Zone-V, Islamabad, Pakistan. Tel.: +92 321 5015699; Fax: +92 51 4486705; E-mail: m.imran.isd@gmail.com.
Abstract: In recent years the number of new malware threats has increased significantly, causing a damage of billions of dollars globally. To counter this aggressive malware attack, the anti-malware industry needs to be able to correctly classify malware in order to provide defense against them. Consequently, malware classification has been an active area of research, and a multitude of malware classification approaches have been proposed in the literature. This paper evaluates two methods of sequence classification based on Hidden Markov Model, namely the maximum likelihood and similarity-based methods, for classification of malware using a large and comprehensive dataset. System calls generated by known malware during execution are used as observation sequences to train the Hidden Markov Models. Malware samples are evaluated against the trained models to produce similarity vectors, which are used in the maximum likelihood and similarity-based classification schemes to predict the family for an unknown malware sample. Comparison of the two schemes shows that combining the powerful statistical pattern analysis capability of Hidden Markov Models and discriminative classifiers in the similarity-based method results in a significantly better classification performance as compared to the maximum likelihood approach. Furthermore, evaluation of different classifiers in the similarity-based method demonstrates that Random Forest classifier performs better than other classifiers on malware similarity vectors.
Keywords: Malware classification, Hidden Markov Model, sequence classification, machine learning
DOI: 10.3233/JIFS-169015
Journal: Journal of Intelligent & Fuzzy Systems, vol. 31, no. 2, pp. 837-847, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl