Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Pérez-Ortega, J. | Pazos, R.A. | Ruiz-Vanoye, J.A. | Frausto-Solís, J. | González-Barbosa, J.J. | Fraire-Huacuja, H.J. | Díaz-Parra, O.
Affiliations: Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca, Mexico | Universidad Juárez Autónoma de Tabasco, Cunduacán, Tabasco, México | Tecnológico de Monterrey Campus Cuernavaca, Cuernavaca, Mexico | Instituto Tecnológico de Cd. Madero, Cd. Madero, Mexico
Note: [] Corresponding author. E-mails: jpo cenidet@yahoo.com.mx (J. Pérez-Ortega); r_pazos_r@yahoo.com.mx (R.A. Pazos R.); jruizvanoye@yahoo.com.mx (J.A. Ruiz-Vanoye); juan.frausto@itesm.mx (J. Frausto-Solís); jjgonzalezbarbosa@gmail.com (J.J. González-Barbosa); hfraire@prodigy.net.mx (H.J. Fraire-Huacuja); koko diazparra@yahoo.com.mx (O. Díaz-Parra).
Abstract: The only metric that had existed so far to determine the best algorithm for solving an general Asymmetric Traveling Salesman Problem (ATSP) instance is based on the number of cities; nevertheless, it is not sufficiently adequate for discriminating the best algorithm for solving an ATSP instance, thus the necessity for devising a new metric through the use of data-mining techniques. In this paper we propose: (1) the use of a genetic distance metric for improving the selection of the algorithms that best solve a given instance of the ATSP and (2) the use of discriminant analysis as a means for predictive learning (data-mining techniques) aiming at selecting meta-heuristic algorithms.
Keywords: Inductive learning, discriminant analysis, data-mining techniques, machine learning, genetic distance metric
DOI: 10.3233/IFS-2010-0435
Journal: Journal of Intelligent & Fuzzy Systems, vol. 21, no. 1, 2, pp. 57-64, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl