Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Challenges for future intelligent systems in biomedicine
Article type: Research Article
Authors: Inza, Iñaki | Sierra, Basilio | Blanco, Rosa | Larrañaga, Pedro
Affiliations: Department of Computer Science and Artificial Intelligence, University of the Basque Country, P.O. Box 649, E-20080 Donostia-San Sebastián, Basque Country, Spain. Tel.: +34 943015026; Fax: +34 943219306; E-mail: inza@si.ehu.es
Abstract: In the last years, there has been a large growth in gene expression profiling technologies, which are expected to provide insight into cancer related cellular processes. Machine Learning algorithms, which are extensively applied in many areas of the real world, are not still popular in the Bioinformatics community. We report on the successful application of four well known supervised Machine Learning methods (IB1, Naive-Bayes, C4.5 and CN2) to cancer class prediction problems in three DNA microarray datasets of huge dimensionality (Colon, Leukemia and NCI-60). The essential gene selection process in microarray domains is performed by a sequential search engine, evaluating the goodness of each gene subset by a wrapper approach which executes, by a leave-one-out process, the supervised algorithm to obtain its accuracy estimation. By the use of the gene selection procedure, the accuracy of supervised algorithms is significantly improved and the number of genes of the classification models is notably reduced for all datasets.
Journal: Journal of Intelligent & Fuzzy Systems, vol. 12, no. 1, pp. 25-33, 2002
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl