Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rivera, Luis F.a; * | Jiménez, Miguela | Tamura, Gabrielb; a | Villegas, Norha M.b; a | Müller, Hausi A.a
Affiliations: [a] Department of Computer Science, University of Victoria, Victoria, Canada | [b] Department of Information and Communication Technologies, Universidad Icesi, Cali, Colombia
Correspondence: [*] These authors contributed equally to this work. Emails: rivera@uvic.ca, miguel@uvic.ca. Tel: (+1)250-472-5865.
Abstract: The proliferation of Smart Cyber-Physical Systems (SCPS) is increasingly blurring the boundaries between physical and virtual entities. This trend is revolutionizing multiple application domains along the whole human activity spectrum, while pushing the growth of new businesses and innovations such as smart manufacturing, cities and transportation systems, as well as personalized healthcare. Technological advances in the Internet of Things, Big Data, Cloud Computing and Artificial Intelligence have effected tremendous progress toward the autonomic control of SCPS operations. However, the inherently dynamic nature of physical environments challenges SCPS’ ability to perform adequate control actions over managed physical assets in myriad of contexts. From a design perspective, this issue is related to the system states of operation that cannot be predicted entirely at design time, and the consequential need to define adequate capabilities for run-time self-adaptation and self-evolution. Nevertheless, adaptation and evolution actions must be assessed before realizing them in the managed system in order to ensure resiliency while minimizing the risks. Therefore, the design of SCPS must address not only dependable autonomy but also operational resiliency. In light of this, the contribution of this paper is threefold. First, we propose a reference architecture for designing dependable and resilient SCPS that integrates concepts from the research areas of Digital Twin, Adaptive Control and Autonomic Computing. Second, we propose a model identification mechanism for guiding self-evolution, based on continuous experimentation, evolutionary optimization and dynamic simulation, as the architecture’s first major component for dependable autonomy. Third, we propose an adjustment mechanism for self-adaptation, based on gradient descent, as the architecture’s second major component, addressing operational resiliency. Our contributions aim to further advance the research of reliable self-adaptation and self-evolution mechanisms and their inclusion in the design of SCPS. Finally, we evaluate our contributions by implementing prototypes and showing their viability using real data from a case study in the domain of intelligent transportation systems.
Keywords: Cyber physical systems, digital twins, continuous experimentation, simulation, models at run-time
DOI: 10.3233/JID210014
Journal: Journal of Integrated Design and Process Science, vol. 25, no. 2, pp. 48-79, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl