Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Heidari, Raheleh | Monnier, Véronique | Martin, Elodie | Tricoire, Hervé*
Affiliations: Unité de Biologie Fonctionnelle et Adaptative (BFA) EAC4413 CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
Correspondence: [*] Correspondence to: Hervé Tricoire, Unité de Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot-CNRS UMR8251, 4 rue Marie Andrée Lagroua Weill Halle, 75205 PARIS CEDEX 13, France. Tel.: +33 1 57 27 79 51; Fax: +33 1 57 27 83 29; Herve.tricoire@univ-paris-diderot.fr
Abstract: Background: Huntington’s disease (HD) is a Polyglutamine disease caused by the presence of CAG repeats in the first exon of Huntingtin (Htt), a large protein with multiple functions. In addition to neurodegeneration of specific brain regions, notably the striatum, HD also shows alterations in peripheral tissues, such as the heart, skeletal muscles or peripheral endocrine glands. Mutant Huntingtin (mHtt)-driven mitochondrial impairment may underlie some of the CNS and peripheral tissues dysfunctions, especially in tissues with high energy demand such as the heart. Objective: The aim of this study is to characterize two new inducible Drosophila HD heart models and to assay the therapeutic potential of methylene blue in these HD models. Methods: We report the construction of inducible Drosophila HD heart models, expressing two Nter fragments of the protein encompassing either exon 1 or the first 171 amino acids and the characterization of heart phenotypes in vivo. Results: We show that both mHtt fragments are able to impair fly cardiac function with different characteristics. Additionally, expression of mHtt, which was limited to adulthood only, leads to mild heart impairment, as opposed to a strong and age-dependent phenotype observed when mHtt expression was driven during both developmental and adult stages. We report that treatment with methylene blue (MB), a protective compound in mitochondria-related diseases, partially protects the fly’s heart against mHtt-induced toxicity, but does not rescue neuronal or glial phenotypes in other fly models of HD. This may be linked to its low penetration through the fly’s blood-brain barrier. Conclusions: Our data suggest that improvement of mitochondrial function by MB, or related compounds, could be an efficient therapeutic strategy to prevent cardiac failure in HD patients.
Keywords: Drosophila, Huntington’s disease, SCA3, heart, methylene blue
DOI: 10.3233/JHD-140130
Journal: Journal of Huntington's Disease, vol. 4, no. 2, pp. 173-186, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl