Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ahmad, Iftekhar; | Habibi, Daryoush
Affiliations: School of Engineering, Edith Cowan University, Joondalup, WA, Australia
Note: [] Corresponding author: Iftekhar Ahmad, School of Engineering, Edith Cowan University, Joondalup, WA-6027, Australia. E-mail: i.ahmad@ecu.edu.au.
Abstract: WiMAX technology has emerged as an exciting technology for next generation broadband wireless network with promises to offer high throughput and long coverage. WiMAX, however, has yet to prove its merits when the wireless nodes are not fixed and move at high vehicular speeds. Recent studies suggest that WiMAX offers limited throughput when a mobile node travels at vehicular speeds. Multipath fading causes high bit error rates at the receiver and is considered the main reason behind low throughput at high vehicular speeds. Bit error rates and maximum packet size govern the packet error rates, and error recovery for higher number of corrupted packets is not an attractive option for many real-time applications with tight delay and jitter constraints. In this paper, we present a mathematical model for estimating bit error rates in WiMAX communication at vehicular speeds. The estimated bit error probability is taken into account for proactively computing an optimum packet size that offers the best chance of achieving improved throughput. We further propose a model that can be used to increase the utility of real-time wireless applications (e.g., video surveillance systems in public train) based on the knowledge of estimated transmission rates. We simulated the proposed and other standard schemes for a centralized video surveillance system in a public train where the train moves at high speeds and sends real-time video data to a central control room through wireless channels. The results show that the proposed scheme achieves significantly higher throughput, lower jitter and higher utility gain compared to the standard schemes.
Keywords: WiMAX communication, vehicular speeds, throughput, utility
DOI: 10.3233/JHS-2012-0449
Journal: Journal of High Speed Networks, vol. 18, no. 3, pp. 157-171, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl