Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: AI-enabled Learning Techniques for Internet of Things Communications
Guest editors: Alireza Souri and Mu-Yen Chen
Article type: Research Article
Authors: Li, Liuxing; *
Affiliations: Department of Information Engineering, Anhui Institute of Economic Management, Hefei 230031, China. E-mail: anjg2019@126.com
Correspondence: [*] Corresponding author. E-mail: anjg2019@126.com.
Abstract: The robust control network for nonlinear large-scale systems with parametric uncertainties also considers the uncertain robust stabilization problem for controlled networks. In heterogeneous populations, hybrid regression models are the most important statistical analysis tools. To aim of the study is to conduct a more in-depth analysis of the existing completive robust control networks relying on biased temporal logic. Compared with the symmetric distribution, the skewed distribution can obtain accurate and effective information. Therefore, a time-series logic model under skewed distribution is proposed. The temporal logic under skew state is applied to describe the normative language of fuzzy systems. Firstly, the mixed nonlinear regression model under skewed distribution data is introduced to test whether the temporal logic formula can be realized under the skew state. Secondly, through the method of reduction, the control flow interval logic CFITL is studied, and the time series logic sequence is used to describe the measurement output loss. The sufficient conditions for the control network system to satisfy the exponential stability and H∞ performance index are given. The linear matrix inequality obtains the completeness control network to be designed, and the effectiveness of the proposed method is verified by stochastic simulation experiments. Finally, the method is verified to be practical and feasible based on actual data. The maximum recognition rates of nearest neighbor classification, nearest subspace classification and biased distribution temporal logic classification reached 0.9019, 0.9622 and 0.9304, respectively.
Keywords: Skewed distribution, temporal logic, robust, the internet, control flow
DOI: 10.3233/JHS-210666
Journal: Journal of High Speed Networks, vol. 27, no. 3, pp. 265-278, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl