Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: AI-enabled Learning Techniques for Internet of Things Communications
Guest editors: Alireza Souri and Mu-Yen Chen
Article type: Research Article
Authors: Ju, Xiaotao; *
Affiliations: College of Electronic Engineering, Xi’an Aeronautical University, Xi’an, 710055, China. E-mail: juxiaotao2008@126.com
Correspondence: [*] Corresponding author. E-mail: juxiaotao2008@126.com.
Abstract: This research was conducted to enhance the energy performance of wireless sensor networks (WSN) and improve the performance of end-to-end delay and packet receiving rate of network operation. In this study, the low-energy data collection routing algorithm and adaptive environment sensing method in WSN were mainly examined. The node centrality, energy surplus, and node temperature were calculated for cluster head selection to reduce the energy consumption of nodes and improve the reliability of network data. The research results have shown that the parameter setting guided by the theoretical analysis makes each node selfishly achieve the maximum expected benefit while the whole network runs reliably, and the energy consumption is reduced by the selfishness of the node. As a result, the proposed algorithm can effectively reduce the network energy consumption and increase the network life cycle of wireless sensor networks. It can be seen that the machine learning methods such as support vector machine are used to model and analyze the state of the sensing node, and to obtain more accurate wireless channel availability judgment based on the historical state data, thereby adaptively adjusting the working duty ratio and reducing the invalidity data sent.
Keywords: Wireless sensor network, energy efficient, routing protocol, node centrality
DOI: 10.3233/JHS-210663
Journal: Journal of High Speed Networks, vol. 27, no. 3, pp. 225-235, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl