Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sen, Arunabha; | Shen, Bao Hong | Bandyopadhyay, Subir
Affiliations: Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85287, USA | School of Computer Science, University of Windsor, Windsor, Ontario, Canada
Note: [] Corresponding author. Tel.: +1 480 965 6153; Fax: +1 480 965 2751; E‐mail: asen@asu.edu.
Abstract: In the protection scheme of fault management in a WDM optical network, corresponding to every source‐destination path used for data transmission, a backup path is maintained in a stand‐by mode. In the case of a failure (either due to a fiber cut or due to equipment failure) in the primary path, data transmission is quickly switched to the backup path. In order to tolerate any single fault, the backup path must be edge (or node) disjoint from the primary path. Most often a shortest path between the source and the destination is chosen as the primary path. To obtain a link (node) disjoint backup (or secondary) path, the links (nodes) of the primary path are removed from the graph and then a shortest path in the modified graph is chosen as the backup path. The attractive feature of this scheme is its simplicity. However, the scheme has a severe drawback. Due to the choice of a shortest path as the primary path, the length of a link disjoint secondary path may be unacceptably large. In this paper, we propose a novel way of choosing the primary and the secondary paths so that the lengths of both the paths are small. Unfortunately, the problem of choosing primary and secondary paths in this way turns out to be NP‐complete. We provide the NP‐completeness proof of both the edge disjoint and the node disjoint version of the problem. We provide an approximation algorithm for the problem with a guaranteed performance bound of 2 and a mathematical programming formulation for the exact solution of the problem. Though the approximate solution provides a performance bound of 2, through extensive experimental evaluation, we find that the approximate solution is very close to the optimal solution and the ratio between the approximate to the optimal solution never exceeds 1.2. Although we discuss the single fault scenario in this paper, the algorithms discussed here, can be used equally effectively for the multiple fault scenario also. Finally, we discuss other variations of the disjoint path problem relevant to the lightwave networks.
Keywords: Optical networks, WDM, survivability, min‐max path pair, min‐sum path pair, shortest path pair
Journal: Journal of High Speed Networks, vol. 10, no. 4, pp. 303-315, 2001
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl