Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hu, Yupenga | Kuang, Wenxina | Zhe, Jind | Li, Wenjiab | Li, Keqinc | Zhang, Jilianga | Hu, Qiaoa; *
Affiliations: [a] The Department of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, China | [b] The Department of Computer Science, New York Institute of Technology, New York, USA | [c] The Department of computer science, State University of New York, New York, USA | [d] China Tobacco Hunan Industrial Co., Ltd., Changsha, Hunan, China
Correspondence: [*] Corresponding author. E-mail: huqiao@hnu.edu.cn.
Abstract: This paper presents the design and implementation of a systematic Inter-Component Communications (ICCs) dynamic Analysis Technique (SIAT) for detecting privacy-sensitive data leak threats. SIAT’s specific approach involves the identification of malicious ICC patterns by actively tracing both data flows and implicit control flows within ICC processes during runtime. This is achieved by utilizing the taint tagging methodology, a technique utilized by TaintDroid. As a result, it can discover the malicious intent usage pattern and further resolve the coincidental malicious ICCs and bypass cases without incurring performance degradation. SIAT comprises two key modules: Monitor and Analyzer. The Monitor makes the first attempt to revise the taint tag approach named TaintDroid by developing the built-in intent service primitives to help Android capture the intent-related taint propagation at multi-level for malicious ICC detection. Specifically, we enable the Monitor to perform systemwide tracking of intent with five abstraction functionalities embedded in the interactive workflow of components. By analyzing the taint logs offered by the Monitor, the Analyzer can build the accurate and integrated ICC patterns adopted to identify the specific leak threat patterns with the identification algorithms and predefined rules. Meanwhile, we employ the patterns’ deflation technique to improve the efficiency of the Analyzer. We implement the SIAT with Android Open Source Project and evaluate its performance through extensive experiments on a particular dataset consisting of well-known datasets and real-world apps. The experimental results show that, compared to state-of-the-art approaches, the SIAT can achieve about 25% ∼200% accuracy improvements with 1.0 precision and 0.98 recall at negligible runtime overhead. Apart from that, the SIAT can identify two undisclosed cases of bypassing that prior technologies cannot detect and quite a few malicious ICC threats in real-world apps with lots of downloads on the Google Play market.
Keywords: Android malware, dynamic threats detection, inter-component communication, taint tags, threat patterns
DOI: 10.3233/JCS-220044
Journal: Journal of Computer Security, vol. 32, no. 3, pp. 291-317, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl