Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Klenze, Tobias | Sprenger, Christoph; * | Basin, David
Affiliations: Department of Computer Science, ETH Zurich, Switzerland
Correspondence: [*] Corresponding author. E-mail: sprenger@inf.ethz.ch.
Abstract: Today’s Internet is built on decades-old networking protocols that lack scalability, reliability and security. In response, the networking community has developed path-aware Internet architectures that solve these problems while simultaneously empowering end hosts to exert some control on their packets’ route through the network. In these architectures, autonomous systems authorize forwarding paths in accordance with their routing policies, and protect these paths using cryptographic authenticators. For each packet, the sending end host selects an authorized path and embeds it and its authenticators in the packet header. This allows routers to efficiently determine how to forward the packet. The central security property of the data plane, i.e., of forwarding, is that packets can only travel along authorized paths. This property, which we call path authorization, protects the routing policies of autonomous systems from malicious senders. The fundamental role of packet forwarding in the Internet’s ecosystem and the complexity of the authentication mechanisms employed call for a formal analysis. We develop IsaNet, a parameterized verification framework for data plane protocols in Isabelle/HOL. We first formulate an abstract model without an attacker for which we prove path authorization. We then refine this model by introducing a Dolev–Yao attacker and by protecting authorized paths using (generic) cryptographic validation fields. This model is parametrized by the path authorization mechanism and assumes five simple verification conditions. We propose novel attacker models and different sets of assumptions on the underlying routing protocol. We validate our framework by instantiating it with nine concrete protocol variants and prove that they each satisfy the verification conditions (and hence path authorization). The invariants needed for the security proof are proven in the parametrized model instead of the instance models. Our framework thus supports low-effort security proofs for data plane protocols. In contrast to what could be achieved with state-of-the-art automated protocol verifiers, our results hold for arbitrary network topologies and sets of authorized paths.
Keywords: Security protocols, formal verification, future Internet, data plane
DOI: 10.3233/JCS-220021
Journal: Journal of Computer Security, vol. 31, no. 3, pp. 217-259, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl