Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Akinyelu, Andronicus A.; *
Affiliations: Department of Computer Science and Informatics, University of the Free State, 9301 Bloemfontein, South Africa. E-mail: akinyeluaa@ufs.ac.za
Correspondence: [*] Corresponding author. E-mail: akinyeluaa@ufs.ac.za.
Abstract: Despite the great advances in spam detection, spam remains a major problem that has affected the global economy enormously. Spam attacks are popularly perpetrated through different digital platforms with a large electronic audience, such as emails, microblogging websites (e.g. Twitter), social networks (e.g. Facebook), and review sites (e.g. Amazon). Different spam detection solutions have been proposed in the literature, however, Machine Learning (ML) based solutions are one of the most effective. Nevertheless, most ML algorithms have computational complexity problem, thus some studies introduced Nature Inspired (NI) algorithms to further improve the speed and generalization performance of ML algorithms. This study presents a survey of recent ML-based and NI-based spam detection techniques to empower the research community with information that is suitable for designing effective spam filtering systems for emails, social networks, microblogging, and review websites. The recent success and prevalence of deep learning show that it can be used to solve spam detection problems. Moreover, the availability of large-scale spam datasets makes deep learning and big data solutions (such as Mahout) very suitable for spam detection. Few studies explored deep learning algorithms and big data solutions for spam detection. Besides, most of the datasets used in the literature are either small or synthetically created. Therefore, future studies can consider exploring big data solutions, big datasets, and deep learning algorithms for building efficient spam detection techniques.
Keywords: Spam detection, nature-inspired algorithm, machine learning, spam email, web spam, social network spam, review spam
DOI: 10.3233/JCS-210022
Journal: Journal of Computer Security, vol. 29, no. 5, pp. 473-529, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl