Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Samarthrao, Kadam Vikasa; * | Rohokale, Vandana M.b
Affiliations: [a] Computer Engineering, Sinhgad Institute of Technology and Science, Lonavala, India. E-mail: vikasskadam@gmail.com | [b] Electronics & Telecommunication Department, Sinhgad Institute of Technology and Science, Narhe, Pune, India
Correspondence: [*] Corresponding author. E-mail: vikasskadam@gmail.com.
Abstract: Email has sustained to be an essential part of our lives and as a means for better communication on the internet. The challenge pertains to the spam emails residing a large amount of space and bandwidth. The defect of state-of-the-art spam filtering methods like misclassification of genuine emails as spam (false positives) is the rising challenge to the internet world. Depending on the classification techniques, literature provides various algorithms for the classification of email spam. This paper tactics to develop a novel spam detection model for improved cybersecurity. The proposed model involves several phases like dataset acquisition, feature extraction, optimal feature selection, and detection. Initially, the benchmark dataset of email is collected that involves both text and image datasets. Next, the feature extraction is performed using two sets of features like text features and visual features. In the text features, Term Frequency-Inverse Document Frequency (TF-IDF) is extracted. For the visual features, color correlogram and Gray-Level Co-occurrence Matrix (GLCM) are determined. Since the length of the extracted feature vector seems to the long, the optimal feature selection process is done. The optimal feature selection is performed by a new meta-heuristic algorithm called Fitness Oriented Levy Improvement-based Dragonfly Algorithm (FLI-DA). Once the optimal features are selected, the detection is performed by the hybrid learning technique that is composed of two deep learning approaches named Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN). For improving the performance of existing deep learning approaches, the number of hidden neurons of RNN and CNN is optimized by the same FLI-DA. Finally, the optimized hybrid learning technique having CNN and RNN classifies the data into spam and ham. The experimental outcomes show the ability of the proposed method to perform the spam email classification based on improved deep learning.
Keywords: Email spam detection, improved deep learning, optimal feature selection, text and visual features, Fitness Oriented Levy Improvement-based Dragonfly Algorithm, Recurrent Neural Network, Convolutional Neural Network
DOI: 10.3233/JCS-200111
Journal: Journal of Computer Security, vol. 30, no. 2, pp. 231-264, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl