Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Babel, Kushala | Cheval, Vincentb; * | Kremer, Steveb
Affiliations: [a] Cornell University, US. E-mail: babel@cs.cornell.edu | [b] Inria Nancy Grand-Est, Loria, France. E-mails: vincent.cheval@inria.fr, steve.kremer@inria.fr
Correspondence: [*] Corresponding author. E-mail: vincent.cheval@inria.fr.
Abstract: Symbolic models for security protocol verification were pioneered by Dolev and Yao in their seminal work. Since then, although inspired by the same ideas, many variants of the original model were developed. In particular, a common assumption is that the attacker has complete control over the network and can therefore intercept any message. This assumption has been interpreted in slightly different ways depending on the particular models: either any protocol output is directly routed to the adversary, or communications may be among any two participants, including the attacker – the scheduling between which exact parties the communication happens is left to the attacker. This difference may seem unimportant at first glance and, depending on the verification tools, either one or the other semantics is implemented. We show that, unsurprisingly, they indeed coincide for reachability properties. However, for indistinguishability properties, we prove that these two interpretations lead to incomparable semantics. We also introduce and study a new semantics, where internal communications are allowed but messages are always eavesdropped by the attacker. This new semantics yields strictly stronger equivalence relations. Moreover, we identify two subclasses of protocols for which the three semantics coincide. Finally, we implemented verification of trace equivalence for each of the three semantics in the DeepSec tool and compare their performances on several classical examples.
Keywords: Cryptographic protocols, symbolic models, verification, semantics, equivalence properties
DOI: 10.3233/JCS-191366
Journal: Journal of Computer Security, vol. 28, no. 1, pp. 71-127, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl