Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Su, Xuana; b | Gao, Hana; b; *
Affiliations: [a] National Key Laboratory of Power Grid Safety, China Electric Power Research Institute, Beijing, China | [b] Northeast Electric Power University, Jilin, China
Correspondence: [*] Corresponding author: Han Gao, Northeast Electric Power University, Jilin, China. E-mail: 13844609588@163.com.
Abstract: In the past few decades, China’s power demand has been increasing, and the power fiber plays a key role in ensuring the orderly dispatching of all links of the power system. The study used a wavelet decomposition and reconstruction method, which is a signal processing technique used to decompose complex optical power data into low-frequency and high-frequency signals with different frequency components. Through this decomposition, we can more clearly observe periodic fluctuations, trend changes, and noise components in optical power data. The study also examined different prediction models, including GRU, LSTM, ARMA), etc. The performance of these models in predicting optical power trends is then analyzed, taking into account their accuracy, stability, and computational efficiency. Finally, we carefully evaluated the GRU-ARMA combined prediction model and determined its superior performance in predicting optical power trends. The outcomes show that after adjusting the input data length of the gating cycle cell model and the relevant parameters of the autoregressive sliding mean model, the residual mean value was 0.0141. At the same time, the root mean square error calculated by the combined prediction model of the gating cycle unit-autoregressive moving mean model was 0.000618, which successfully improved the accuracy of predicting the optical power trend of power fiber. This research result provides an important reference for the aging state assessment of power fiber lines, and has an important practical application value for the maintenance of power fiber lines.
Keywords: Feature extraction, network situation, fault diagnosis, security early warning, power system
DOI: 10.3233/JCM-247293
Journal: Journal of Computational Methods in Sciences and Engineering, vol. 24, no. 2, pp. 891-905, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl