Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Tang, Yia | Wang, Zhengb; *
Affiliations: [a] College of Aeronautical Electromechanical Equipment Maintenance, Changsha Aeronautical Vocational and Technical College, Changsha, Hunan, China | [b] Department of Aeronautical Engineering, Shijiazhuang Engineering Vocational College, Shijiazhuang, Hebei, China
Correspondence: [*] Corresponding author: Zheng Wang, Department of Aeronautical Engineering, Shijiazhuang Engineering Vocational College, Shijiazhuang, Hebei 050061, China. E-mail: guxing112116@163.com.
Abstract: The development of science and technology requires UAV to improve the accuracy of path planning to better apply in the military field and serve the people. The research proposes to use the social spider algorithm to optimize the ant colony algorithm, and jointly build an IACA to deal with the optimal selection problem of UAV path planning. Firstly, the swarm spider algorithm is used to make a reasonable division and planning of the UAV’s flight field. Secondly, the AC is used to adjust and control the UAV’s state and path. Then, the IACA is formed to carry out performance simulation and comparison experiments on the optimal path planning of the UAV to verify the superiority of the research algorithm. The results show that the maximum number of iterations of the original AC and the IACA is 100, but the IACA under the route planning optimization reaches the convergence state in 32 generations; Moreover, when the number of iterations is about 20 generations, there will be a stable fitness value, which saves time for the experiment to find the optimal path. In the simulation experiment, it is assumed that three UAVs will form a formation to conduct the experiment, and the multiple UAVs will be subject to global track planning and repeated rolling time domain track planning. The autonomous operation time of multiple UAVs through the assembly point is (5.30 s, 5.79 s, 9.29 s). The distance between UAVs during flight is predicted. It is found that the nearest distance is 2.3309 m near t= 6.65 s, which is in line with the safety distance standard. Under the improved algorithm, the speed in all directions is also relatively gentle. All the above results show that the improved algorithm can effectively improve the iteration speed and save time.
Keywords: Multi-UAV, autonomy, trajectory, IACA
DOI: 10.3233/JCM-226800
Journal: Journal of Computational Methods in Sciences and Engineering, vol. 23, no. 4, pp. 2193-2204, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl