Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wei, Linga; * | Luo, Hong-Xuanb | Zhai, Shao-Leia | Huang, Bo-Yangb | Chen, Yea
Affiliations: [a] Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Yunnan, China | [b] Guangdong Provincial Key Laboratory of Intelligent Measurement and Advanced Metering of Power Grid, Guangzhou, China
Correspondence: [*] Corresponding author: Ling Wei, Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Yunnan, China. E-mail: 735708067@qq.com.
Abstract: With the construction of smart grid, increasing number of smart devices will be connected to the power communication network. Therefore, how to allocate the resources of access devices has become an urgent problem to be solved in smart grid. However, due to the diversity and time-variability of access devices at the edge of the power grid, such dynamic changes may lead to untimely and unbalanced resource allocation of the power grid and additional system overhead, resulting in reducing the efficiency of power grid operation, unbalanced workload and other problems. In this paper, a grid resource allocation scheme based on Gauss optimization is proposed. The grid virtualization application resources are managed through three main steps: decomposition, combination and exchange, so as to realize the reasonable allocation of grid resources. Considering the time-variability of the grid topology and the diversity of the access device, the computational complexity of the traditional data analysis model is too high to be suitable for time-sensitive power network structure. This paper proposes an MPNN framework combined with the Graph Convolutional Network (GCN) to enhance the calculation efficiency and realize the rapid allocation of network resources. Since the smart gateway connected by the grid terminal has certain computation ability, the cloud computing used in distribution model in deep learning to find the optimal solution can be distributed in the cloud and edge computing gateway. In this way, The entire electricity network can efficiently manage and orchestrate virtual services to maximize the utility of grid virtual resources. Furthermore, this paper also adopt the GG-NN (Gated Graph Neural Network) which is based on the MPNN framework in the training. Finally, we carry out simulation for the Gauss optimization scheme and the MPNN-based scheme to verify that the convolutional diagram neural network is suitable for virtual resource allocating in multi-access power Internet-of –Things (IoTs).
Keywords: Resource allocation, smart grid, GCN, multi-access, mobile edge computation
DOI: 10.3233/JCM-215864
Journal: Journal of Computational Methods in Sciences and Engineering, vol. 22, no. 2, pp. 635-648, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl