Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Ying | Liu, Yiding* | Xia, Minna
Affiliations: Hunan Automotive Engineering Vocational College, Zhuzhou, Hunan 412000, China
Correspondence: [*] Corresponding author: Yiding Liu, Hunan Automotive Engineering Vocational College, Zhuzhou, Hunan 412000, China. E-mail: yidingliu1988@163.com.
Abstract: Big data is featured by multiple sources and heterogeneity. Based on the big data platform of Hadoop and spark, a hybrid analysis on forest fire is built in this study. This platform combines the big data analysis and processing technology, and learns from the research results of different technical fields, such as forest fire monitoring. In this system, HDFS of Hadoop is used to store all kinds of data, spark module is used to provide various big data analysis methods, and visualization tools are used to realize the visualization of analysis results, such as Echarts, ArcGIS and unity3d. Finally, an experiment for forest fire point detection is designed so as to corroborate the feasibility and effectiveness, and provide some meaningful guidance for the follow-up research and the establishment of forest fire monitoring and visualized early warning big data platform. However, there are two shortcomings in this experiment: more data types should be selected. At the same time, if the original data can be converted to XML format, the compatibility is better. It is expected that the above problems can be solved in the follow-up research.
Keywords: Multi-source heterogeneity, hybrid big data analysis, hadoop and spark, monitoring and early warning, visualization
DOI: 10.3233/JCM-215138
Journal: Journal of Computational Methods in Sciences and Engineering, vol. 21, no. 3, pp. 713-722, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl