Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Tang, Jingfan | Zhang, Xiujie* | Zhang, Min | Wu, Xinqiang | Jiang, Ming
Affiliations: School of Computer Science, HangZhou DianZi University, Hangzhou, Zhejiang, China
Correspondence: [*] Corresponding author: Xiujie Zhang, School of Computer Science, HangZhou DianZi University, Hangzhou, Zhejiang, China. %****␣jcm-20-jcm204226_temp.tex␣Line␣25␣**** E-mail: 1564752861@qq.com.
Abstract: Reviews text reflects user interests and product characteristics, which provide rich useful semantic textual information for modeling user and product. Some existing works improve the performance of rating prediction by distinguishing the usefulness of each review. However, most of them ignore the fact that the usefulness of each review should be dynamic and dependent on the target user-product pair. For example, when we predict the user’s ratings of a restaurant, the user’s previous reviews about restaurants should be more useful. To be more specific, when we model the target user-product pair, the usefulness of each review is associated with the target user and item. To address the above issue, we use a Review-level Dynamic Topic Co-Attention, which combines all reviews written by the user and all reviews that were written for the product to assign attention score for each review collaboratively. Besides, we believe that product category and user co-purchase information can further improve the rating prediction performance. In this paper, we propose a neural joint model called NMRP based on reviews, products category, and users’ co-purchase information for rating prediction recommendation. First, the Review Extraction Module learns user and product information from reviews. Then, HIN Extraction Module extracts the association feature for a given target user-product pair from a heterogeneous information network (HIN). Finally, the two parts of data are connected and input into the feature interaction method Attentional Factorization Machines (AFM), to achieve rating prediction. The experimental study on three datasets from Amazon shows that our model outperforms recently proposed baselines such as DeepCoNN, TransNets, and NARRE.
Keywords: Rating prediction, recommendation system, co-attention
DOI: 10.3233/JCM-204226
Journal: Journal of Computational Methods in Sciences and Engineering, vol. 20, no. 4, pp. 1127-1142, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl