Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: New Section: Letters to the Editor
Article type: Research Article
Authors: Fiebert, Ira M.; * | Roach, Kathryn E. | Fingerhut, Bonni | Levy, Jill | Schumacher, Andrea
Affiliations: University of Miami School of Medicine, Division of Physical Therapy, 5915 Ponce de Leon Boulevard, Plumer Building 5th Floor, Coral Gables, Florida 33146, USA
Correspondence: [*] Corresponding author. Tel.: + 1 305 2844535. Fax: + 1 305 2846128. E-mail: idingley@mednet.med.miami.edu.
Abstract: The purpose of this investigation was to determine how the position of tibial rotation effects the EMG activity of the medial and lateral hamstrings during low-force isometric knee flexion contractions. Forty-five subjects (ages 18–35) with no history of lower extremity injury or disease volunteered for this study. While lying prone, and with surface EMG electrodes secured to the bellies of their right medial (semitendinous and semimembranosus) and lateral (long head of the biceps femoris) hamstring muscles, each subject held the knee in 45° of flexion for 8 s against 5% of their body weight. This was performed three times in each of the positions of neutral tibial rotation, external tibial rotation, and internal tibial rotation. The root-mean-square (RMS) of the EMG activity from these muscles was determined for each of the contractions. A repeated measures ANOVA was used to compare the RMS values of the two muscle groups in the three positions. The average RMS values (in microvolts [mV]) obtained were (means and standard deviation): medial hamstrings in external rotation: 50.74 ± 23.11; in neutral: 65.57 ± 25.35; in internal rotation: 70.73 ± 31.86; lateral hamstrings in external rotation: 66.08 ± 46.99; in neutral: 46.18 ± 39.34; in internal rotation: 27.68 ± 17.86. A statistically significant interaction was found between tibial rotation and hamstring muscle (p < 0.0001). These results are consistent with the presumed function of these muscles in that EMG activity in the medial hamstrings increased when the tibia was rotated internally, whereas the lateral hamstring EMG activity increased when the tibia was rotated externally.
Keywords: Isometric, Hamstrings, Electromyography, Manual muscle test
DOI: 10.3233/BMR-1997-8306
Journal: Journal of Back and Musculoskeletal Rehabilitation, vol. 8, no. 3, pp. 215-222, 1997
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl