Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Jeon, Jeong Woo | Hong, Jiheon*
Affiliations: Department of Physical Therapy, Sun Moon University, Asan-si, Chungnam-do, Korea
Correspondence: [*] Corresponding author: Jiheon Hong, Department of Physical Therapy, College of Health Sciences, Sun Moon University, Asan-si, Chungnam-do, Korea. Tel.: +82 10 2299 1802; Fax: +82 41 530 2727; E-mail: hgh1020@hanmail.net.
Abstract: BACKGROUND: The screw-home mechanism (SHM) plays an important role in the stability of the knee. Accordingly, the analysis of tibial rotation patterns can be used to elucidate the effect of SHM-related factors. OBJECTIVE: The purpose of this study was to compare the magnitude of the angle and the pattern of SHM between passive and active movements. METHODS: We studied twenty healthy males, of which the angle of knee flexion-extension and tibial longitudinal rotation (TLR) during active and passive movements were measured using the inertial measurement unit. Student’s t-tests were used to compare the magnitude of TLR. The waveform similarity was quantified using a coefficient of multiple correlation (CMC). RESULTS: Significant differences were found in the TLR between the active and passive movements (p< 0.05). The knee flexion-extension waveform similarity was excellent (CMC = 0.956). However, the waveform similarity of TLR was weak (CMC = 0.629). CONCLUSION: The SHM increased abruptly during the last 20∘ of the active (extension) movement compared with passive extension. The SHM occurred mainly owing to the geometry and shape of the articular surfaces of the knee joint. In addition, muscle contraction was considered to be an important factor in the articulation movement.
Keywords: Screw-home movement, inertial measurement unit, inertial sensor, knee stability, tibia longitudinal rotation
DOI: 10.3233/BMR-200110
Journal: Journal of Back and Musculoskeletal Rehabilitation, vol. 34, no. 4, pp. 589-595, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl