Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lee, Shih-Hsiunga; **; * | Yeh, Chien-Huib
Affiliations: [a] Department of Intelligent Commerce,National Kaohsiung University of Science and Technology, Kaohsiung City 824, Taiwan | [b] Eshaitek Co., ltd., Tainan City 701, Taiwan
Correspondence: [*] Corresponding author. E-mail: shlee@nkust.edu.tw.
Note: [**] Do not use capitals for the author’s surname.
Abstract: With the social evolution, economic development, and continuously improved living standards, the dramatically increasing garbage produced by human beings has seriously affected our living environment. There are 3 main ways to dispose of garbage: sanitary landfill, incineration, or recycling. At present, a huge amount of labor resources is required for pre-sorting before garbage disposal, which greatly reduces efficiency, increases costs, and even leads to direct incineration without sorting. Hence, this study proposes a solution scenario of how to use object detection technology for garbage sorting. With the development of the deep learning theory, object detection technology has been widely used in all fields, thus, how to find target objects accurately and rapidly is one of the key technologies. This paper proposes a highly efficient garbage pick-up embedded system, where detection is optimized based on the Single Shot MultiBox Detector (SSD) neural network architecture and reduced model parameters. The experimental verification scenario was conducted in a dynamic environment integrating a robotic arm with a conveyor belt simulated by an electronic rotating turntable. The experimental results show that the modified model can accurately identify garbage types, with a significant speed of 27.8 FPS (Frames Per Second) on NVidia Jetson TX2, and an accuracy rate of approximately 87%.
Keywords: AI embedded system, deep learning, robotic arm control, garbage picking up
DOI: 10.3233/AIS-210129
Journal: Journal of Ambient Intelligence and Smart Environments, vol. 14, no. 5, pp. 405-421, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl