Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Review Article
Authors: Liu, Yiminga | Shen, Yonga; b; c; *
Affiliations: [a] Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China | [b] Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China | [c] Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
Correspondence: [*] Correspondence to: Yong Shen, Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. E-mail: yongshen@ustc.edu.cn.
Abstract: With the rapid aging of the global population, the prevalence of neurodegenerative diseases has become a significant concern, with Alzheimer’s disease (AD) being the most common. However, the clinical trials of many drugs targeting AD have failed due to the challenges posed by the blood-brain barrier (BBB), which makes intracerebral administration of drugs difficult. However, nanoparticles (NPs) may aid in the delivery of such drugs. NPs are materials with sizes between 1–100 nm that offer several advantages, such as improving biocompatibility, prolonging half-life, transporting large molecules, crossing the BBB to deliver to the central nervous system, and exhibiting good targeting ability. In addition to drug delivery, NPs also have excellent diagnostic potential, and multifunctional NPs can integrate the advantages of diagnosis, targeting, and treatment. This mini-review article provides an overview of NPs, including the composition of the carrier, strategies for crossing the BBB, and different targets of AD pathology, with the aim of providing guidance for the development prospects of NPs.
Keywords: Alzheimer’s disease, blood-brain barrier, drug delivery, nanoparticles
DOI: 10.3233/JAD-230098
Journal: Journal of Alzheimer's Disease, vol. 96, no. 2, pp. 459-471, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl