Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Dobromyslin, Vitaly I.; 1 | Megherbi, Dalila B.; * | for the Alzheimer’s Disease Neuroimaging Initiative
Affiliations: Center for Computer Machine/Human Intelligence Networking and Distributed Systems, University of Massachusetts, Lowell, MA, USA
Correspondence: [*] Correspondence to: Professor Dalila B. Megherbi, Center for Computer Machine/Human Intelligence Networking and Distributed Systems, University of Massachusetts, Lowell, MA, USA. E-mail: Dalila_Megherbi@uml.edu.
Note: [1] Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
Abstract: Background:Structural brain imaging metrics and gene expression biomarkers have previously been used for Alzheimer’s disease (AD) diagnosis and prognosis, but none of these studies explored integration of imaging and gene expression biomarkers for predicting mild cognitive impairment (MCI)-to-AD conversion 1-2 years into the future. Objective:We investigated advantages of combining gene expression and structural brain imaging features for predicting MCI-to-AD conversion. Selection of the differentially expressed genes (DEGs) for classifying cognitively normal (CN) controls and AD patients was benchmarked against previously reported results. Methods:The current work proposes integrating brain imaging and blood gene expression data from two public datasets (ADNI and ANM) to predict MCI-to-AD conversion. A novel pipeline for combining gene expression data from multiple platforms is proposed and evaluated in the two independents patient cohorts. Results:Combining DEGs and imaging biomarkers for predicting MCI-to-AD conversion yielded 0.832-0.876 receiver operating characteristic (ROC) area under the curve (AUC), which exceeded the 0.808-0.840 AUC from using the imaging features alone. With using only three DEGs, the CN versus AD predictive model achieved 0.718, 0.858, and 0.873 cross-validation AUC for the ADNI, ANM1, and ANM2 datasets. Conclusion:For the first time we show that combining gene expression and imaging biomarkers yields better predictive performance than using imaging metrics alone. A novel pipeline for combining gene expression data from multiple platforms is proposed and evaluated to produce consistent results in the two independents patient cohorts. Using an improved feature selection, we show that predictive models with fewer gene expression probes can achieve competitive performance.
Keywords: Alzheimer’s disease, gene expression, MCI-to-AD conversion, predictive model
DOI: 10.3233/JAD-215640
Journal: Journal of Alzheimer's Disease, vol. 87, no. 2, pp. 583-594, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl