Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Review Article
Authors: Maher, Barbara A.; *
Affiliations: Lancaster Environment Centre, University of Lancaster, UK
Correspondence: [*] Correspondence to: Barbara A. Maher, PhD, Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK. Tel.: +44 1524 510268; E-mail: b.maher@lancaster.ac.uk.
Abstract: Fewer than 5% of Alzheimer’s disease (AD) cases are demonstrably directly inherited, indicating that environmental factors may be important in initiating and/or promoting the disease. Excess iron is toxic to cells; iron overload in the AD brain may aggressively accelerate AD. Magnetite nanoparticles, capable of catalyzing formation of reactive oxygen species, occur in AD plaques and tangles; they are thought to form in situ, from pathological iron dysfunction. A recent study has identified in frontal cortex samples the abundant presence of magnetite nanoparticles consistent with high-temperature formation; identifying therefore their external, not internal source. These magnetite particles range from ∼10 to 150 nm in size, and are often associated with other, non-endogenous metals (including platinum, cadmium, cerium). Some display rounded crystal morphologies and fused surface textures, reflecting cooling and crystallization from an initially heated, iron-bearing source material. Precisely-matching magnetite ‘nanospheres’ occur abundantly in roadside air pollution, arising from vehicle combustion and, especially, frictional brake-wear. Airborne magnetite pollution particles < ∼200 nm in size can access the brain directly via the olfactory and/or trigeminal nerves, bypassing the blood-brain barrier. Given their toxicity, abundance in roadside air, and nanoscale dimensions, traffic-derived magnetite pollution nanoparticles may constitute a chronic and pernicious neurotoxicant, and hence an environmental risk factor for AD, for large population numbers globally. Olfactory nerve damage displays strong association with AD development. Reported links between AD and occupational magnetic fields (e.g., affecting welders, machinists) may instead reflect inhalation exposure to airborne magnetic nanoparticles.
Keywords: Air pollution, Alzheimer’s disease, inhalation exposure, iron overload, magnetite nanoparticles, metal nanoparticles
DOI: 10.3233/JAD-190204
Journal: Journal of Alzheimer's Disease, vol. 71, no. 2, pp. 361-375, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl