Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hascup, Kevin N.a; b | Britz, Jesseb | Findley, Caleigh A.a; b | Tischkau, Shelleyb | Hascup, Erin R.a; b; *
Affiliations: [a] Department of Neurology, Center for Alzheimer’s Disease and Related Disorders, Neurosciences Institute, Springfield, IL, USA | [b] Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
Correspondence: [*] Correspondence to: Erin R. Hascup, Department of Neurology, Center for Alzheimer’s Disease and Related Disorders, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL 62794-9628, USA. Tel.: +1 217 545 6988; E-mail: ehascup@siumed.edu.
Abstract: Chronically elevated basal glutamate levels are hypothesized to attenuate detection of physiological signals thereby inhibiting memory formation and retrieval, while inducing excitotoxicity-mediated neurodegeneration observed in Alzheimer’s disease (AD). However, current medication targeting the glutamatergic system, such as memantine, shows limited efficacy and is unable to decelerate disease progression, possibly because it modulates postsynaptic N-methyl-D-aspartate receptors rather than glutamate release or clearance. To determine if decreasing presynaptic glutamate release leads to long-term procognitive effects, we treated AβPP/PS1 mice with LY379268 (3.0 mg/kg; i.p.), a metabotropic glutamate receptor (mGluR)2/3 agonist from 2–6 months of age when elevated glutamate levels are first observed but cognition is unaffected. C57BL/6J genetic background control mice and another cohort of AβPP/PS1 mice received normal saline (i.p.) as vehicle controls. After 6 months off treatment, mice receiving LY379268 did not show long-term improvement as assessed by the Morris water maze (MWM) spatial learning and memory paradigm. Following MWM, mice were isoflurane anesthetized and a glutamate selective microelectrode was used to measure in vivo basal and stimulus-evoked glutamate release and clearance independently from the dentate, CA3, and CA1 hippocampal subregions. Immunohistochemistry was used to measure hippocampal astrogliosis and plaque pathology. Similar to previous studies, we observed elevated basal glutamate, stimulus evoked glutamate release, and astrogliosis in AβPP/PS1 vehicle mice versus C57BL/6J mice. Treatment with LY379268 did not attenuate these responses nor diminish plaque pathology. The current study builds upon previous research demonstrating hyperglutamatergic hippocampal signaling in AβPP/PS1 mice; however, long-term therapeutic efficacy of LY379268 in AβPP/PS1 was not observed.
Keywords: Alzheimer’s disease, amyloid-β , cognition, early intervention, glial fibrillary acidic protein, metabotropic glutamate receptor
DOI: 10.3233/JAD-181231
Journal: Journal of Alzheimer's Disease, vol. 68, no. 3, pp. 1193-1209, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl