Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Review Article
Authors: Olsen, Ingara; * | Singhrao, Sim K.b
Affiliations: [a] Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway | [b] Oral & Dental Sciences Research Group, College of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
Correspondence: [*] Correspondence to: Ingar Olsen, Department of Oral Biology, Faculty of Dentistry, University of Oslo, PB 1052 Blindern, 0316, Oslo, Norway. Tel.: +47 90777482; E-mail: ingar.olsen@odont.uio.no.
Abstract: Inflammasomes are responsible for the maturation of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-18, and IL-33 and activation of inflammatory cell death, pyroptosis. They assemble in response to cellular infection and stress or to tissue damage, promote inflammatory reactions, and are important in regulating innate immunity particularly by acting as platforms for activation of caspase proteases. They appear to be involved in several pathological processes activated by microbes including Alzheimer’s disease (AD). Best characterized in microbial pathogenesis is the nucleotide-binding domain and leucine-rich repeat (NLR)-protein 3 (NLRP3) inflammasome. AD is a neurodegenerative condition in which the neuropathological hallmarks are the deposition of amyloid-β (Aβ) and hyperphosphorylated tau protein coated neurofibrillary tangles. For decades, the role of the innate immune system in the etiology of AD was considered less important, but the recently discovered inflammatory genes by genome-wide association studies driving inflammation in this disease has changed this view. Innate immune inflammatory activity in the AD brain can result from the pathological hallmark protein Aβ as well as from specific bacterial infections that tend to possess weak immunostimulatory responses for peripheral blood myeloid cell recruitment to the brain. The weak immunostimulatory activity is a consequence of their immune evasion strategies and survival. In this review we discuss the possibility that inflammasomes, particularly via the NLR family of proteins NLRP3 are involved in the pathogenesis of AD. In addition, we discuss the plausible contribution of specific bacteria playing a role in influencing the activity of the NLRP3 inflammasome to AD progression.
Keywords: Alzheimer’s disease, amyloid-beta, bacteria, cytokines, inflammasome
DOI: 10.3233/JAD-160197
Journal: Journal of Alzheimer's Disease, vol. 54, no. 1, pp. 45-53, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl