Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Xu, Wenjina | Xu, Fengb | Anderson, Maria E.a | Kotarba, AnnMarie E.b | Davis, Judianneb | Robinson, John K.a | Van Nostrand, William E.b; *
Affiliations: [a] Department of Psychology, Stony Brook University, Stony Brook, NY, USA | [b] Departments of Neurosurgery and Medicine, Stony Brook University, Stony Brook, NY, USA
Correspondence: [*] Correspondence to: Dr. William E. Van Nostrand, Department of Neurosurgery, HSC T-12/086, Stony Brook University, Stony Brook, NY 11794-8122, USA. E-mail: William.VanNostrand@sbumed.org.
Abstract: Alzheimer's disease (AD) is an age-dependent neurodegenerative condition that causes a progressive decline in cognitive function. Accumulation of amyloid β-protein (Aβ) in the brain is a prominent feature of AD and related disorders. However, the levels of Aβ accumulation alone are not a reliable predictor of cognitive deficits. Aβ accumulates in AD brain in the form of parenchymal amyloid plaques and cerebral vascular deposits. Although both types of lesions can contribute to cognitive decline, their temporal impact remains unclear. Moreover, cerebral microvascular pathology is identified as an early driver of cognitive impairment. Here for the first time, we compared two transgenic mouse strains, Tg-5xFAD and Tg-SwDI, which exhibit similar onset and anatomical accumulation of Aβ, but with distinct parenchymal and microvascular compartmental deposition, respectively, to assess their impact on cognitive impairment. Cohorts of each line were tested at 3 and 6 months of age to assess the relationship between spatial working memory performance and quantitative pathology. At 3 months of age, Tg-SwDI mice with onset of cerebral microvascular amyloid were behaviorally impaired, while the Tg-5xFAD, which had disproportionately higher levels of total Aβ, soluble oligomeric Aβ, and parenchymal amyloid were not. However, at 6 months of age, behavioral deficits for both groups of transgenic mice were evident, as the levels of Aβ pathologies in the Tg-5xFAD accumulated to extremely high amounts. The present findings suggest early-onset cerebral microvascular amyloid deposition, that precedes high parenchymal levels of Aβ, may be an important early factor in the development of cognitive deficits.
Keywords: Amyloid-β protein, cerebral microvascular, cognitive impairment, parenchymal, pathology, transgenic mice
DOI: 10.3233/JAD-130758
Journal: Journal of Alzheimer's Disease, vol. 38, no. 3, pp. 621-632, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl