Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Physiopathology of Vascular Risk Factors in Alzheimer's Disease
Guest editors: Jack de la Torre
Article type: Review Article
Authors: Bell, Robert D.; *
Affiliations: Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
Correspondence: [*] Correspondence to: Robert D. Bell, PhD, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA. E-mail: robert_bell@urmc.rochester.edu.
Abstract: The vascular system plays an integral role during Alzheimer's disease (AD). Both systemic circulatory changes and alterations directly within the brain vasculature have been suggested to contribute to both the onset and progression of neurological conditions such as AD. It is now well established that vascular risk factors including hypertension, diabetes, obesity, atherosclerosis, metabolic syndrome, and stroke significantly increase one's risk of later developing AD. Research within the last decade has begun to identify specific vascular molecules associated with such risk factors as well as elucidate the biological role they may play in the pathological processes linked to AD. This review aims to provide an overview of some of the key molecules within vascular cells and circulating in blood that have been identified to be altered in AD pathogenesis. In particular, the vascular-specific transcription factors MEOX2, MYOCD, and SRF, genetic risk factor APOE4, transport proteins LRP1 and RAGE, and circulating molecules such as sLRP1, homocysteine, and albumin are discussed. I aim to clarify how these identified vascular molecules may help to predict, explain, and influence the incidence AD. A strong emphasis is placed on the concept that these molecules play overlapping roles in cardiovascular disease progression, neurovascular dysfunction, and amyloid-β pathology. The studies reviewed here have identified vascular-based molecular targets in AD and thus provide new therapeutic avenues for the treatment of this devastating disease.
Keywords: APOE4, blood-brain barrier, cardiovascular, LRP1, MEOX2, MYOCD, neurovascular, RAGE, SRF
DOI: 10.3233/JAD-2012-121060
Journal: Journal of Alzheimer's Disease, vol. 32, no. 3, pp. 699-709, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl