Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Metabolic-Cognitive Syndrome: Update on the Metabolic Pathway in Neurodegenerative Disorders
Guest editors: Vincenza Frisardi and Bruno Imbimbo
Article type: Review Article
Authors: Stranahan, Alexis M.a; * | Mattson, Mark P.b
Affiliations: [a] Physiology Department, Georgia Health Sciences University, Augusta, Georgia, GA, USA | [b] Cellular and Molecular Neuroscience Section, Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Biomedical Research Center, Baltimore, MD, USA
Correspondence: [*] Correspondence to: Alexis M. Stranahan, Ph.D., Physiology Department, Georgia Health Sciences University, 1120, 15th St, Room CA3145, Augusta, GA 30912, USA. Tel.: +1 706 721 7885; Fax: +1 706 721 7299; E-mail: astranahan@georgiahealth.edu.
Abstract: Mild cognitive impairment (MCI) and Alzheimer's disease (AD) represent points on a continuum of cognitive performance in aged populations. Cognition may be impaired or preserved in the context of brain aging. One theory to account for memory maintenance in the context of extensive pathology involves ‘cognitive reserve’, or the ability to compensate for neuropathology through greater recruitment of remaining neurons. In this review, we propose a complementary hypothesis of ‘metabolic reserve’, where a brain with high metabolic reserve is characterized by the presence of neuronal circuits that respond adaptively to perturbations in cellular and somatic energy metabolism and thereby protects against declining cognition. Lifestyle determinants of metabolic reserve, such as exercise, reduced caloric intake, and intake of specific dietary components can promote neuroprotection, while pathological states arising from sedentary lifestyles and excessive caloric intake contribute to neuronal endangerment. This bidirectional relationship between metabolism and cognition may be mediated by alterations in central insulin and neurotrophic factor signaling and glucose metabolism, with downstream consequences for accumulation of amyloid-β and hyperphosphorylated tau. The metabolic reserve hypothesis is supported by epidemiological findings and the spectrum of individual cognitive trajectories during aging, with additional data from animal models identifying potential mechanisms for this relationship. Identification of biomarkers for metabolic reserve could assist in generating a predictive model for the likelihood of cognitive decline with aging.
Keywords: Brain-derived neurotrophic factor (BDNF), caloric restriction, diabetes, diet, exercise, insulin, metabolic syndrome, neurodegeneration
DOI: 10.3233/JAD-2011-110899
Journal: Journal of Alzheimer's Disease, vol. 30, no. s2, pp. S5-S13, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl