Statins and the Squalene Synthase Inhibitor Zaragozic Acid Stimulate the Non-Amyloidogenic Pathway of Amyloid-β Protein Precursor Processing by Suppression of Cholesterol Synthesis
Abstract
Cholesterol-lowering drugs such as statins influence the proteolytic processing of the amyloid-β protein precursor (AβPP) and are reported to stimulate the activity of α-secretase, the major preventive secretase of Alzheimer's disease. Statins can increase the α-secretase activity by their cholesterol-lowering properties as well as by impairment of isoprenoids synthesis. In the present study, we elucidate the contribution of these pathways in α-secretase activation. We demonstrate that zaragozic acid, a potent inhibitor of squalene synthase which blocks cholesterol synthesis but allows synthesis of isoprenoids, also stimulates α-secretase activity. Treatment of human neuroblastoma cells with 50 μM zaragozic acid resulted in a ∼3 fold increase of α-secretase activity and reduced cellular cholesterol by ∼30%. These effects were comparable to results obtained from cells treated with a low lovastatin concentration (2 μM). Zaragozic acid-stimulated secretion of α-secretase-cleaved soluble AβPP was dose dependent and saturable. Lovastatin- or zaragozic acid-stimulated increase of α-secretase activity was completely abolished by a selective ADAM10 inhibitor. By targeting the α-secretase ADAM10 to lipid raft domains via a glycosylphosphatidylinositol anchor, we demonstrate that ADAM10 is unable to cleave AβPP in a cholesterol-rich environment. Our results indicate that inhibition of cholesterol biosynthesis by a low lovastatin concentration is sufficient for α-secretase activation.