Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Similarities and Differences Between Mild Cognitive Impairment and Alzheimer's Disease
Article type: Research Article
Authors: McGeer, Edith G. | McGeer, Patrick L.; *
Affiliations: Kinsmen Laboratory of Neurological Research, University of British Columbia | Sanders-Brown Center on Aging and Alzheimer's Disease Center, Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
Correspondence: [*] Corresponding author: Dr. Patrick L. McGeer, Kinsmen Laboratory of Neurological Research, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada. E-mail: mcgeerpl@interchange.ubc.ca.
Abstract: Neuroinflammation is a prominent feature of Alzheimer disease (AD) and other chronic neurodegenerative disorders. It exacerbates the fundamental pathology by generating a plethora of inflammatory mediators and neurotoxic compounds. Inflammatory cytokines, complement components, and toxic free radicals are among the many species that are generated. Microglia attack the pathological entities and may inadvertently injure host neurons. Recent evidence indicates that microglia can be stimulated to assume an antiinflammatory state rather than a proinflammatory state which may have therapeutic potential. Proinflammatory cytokines include IL-1, IL-6 and TNF, while antiinflammatory cytokines include IL-4 and IL-10. Complement activation is a separate process which causes extensive neuronal damage in AD through assembly of the membrane attack complex. Aggregated amyloid-β is a potent activator of human complement but not of mouse complement. This is an important difference between AD and transgenic mouse models of AD. Many so far unexplored molecules may contribute to neuroinflammation or act to inhibit it. Stable isotope labeling by amino acids in cell culture (SILAC) analysis identified 174 proteins that were upregulated by two-fold or more, and 189 that were downregulated by 2-fold or more following inflammatory stimulation of microglial-like THP-1 cells. Neurotoxicity may result from any combination of these and further exploration is clearly warranted. In addition, many small molecules may play a significant role. One example is hydrogen sulfide which appears to be an endogenous antiinflammatory agent.
Keywords: Amyloid-β, astrocytes, complement, hydrogen sulfide, microglia, neurotoxicity
DOI: 10.3233/JAD-2010-1219
Journal: Journal of Alzheimer's Disease, vol. 19, no. 1, pp. 355-361, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl