Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Mitochondria in Alzheimer's Disease
Guest editors: Paula I. Moreirax and Catarina Oliveiray
Article type: Research Article
Authors: Ohta, Shigeo; * | Ohsawa, Ikuroh
Affiliations: Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki-city, Kanagawa-pref., 211-8533 Japan | [x] Center for Neuroscience and Cell Biology, Institute of Physiology – Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal | [y] Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
Correspondence: [*] Corresponding author. Fax: +81 44 733 9268; E-mail: ohta@nms.ac.jp.
Abstract: The mitochondrion is an organelle that plays a central role in energy production. It, at the same time, generates reactive oxygen species as by-products. Large-scale epidemiological case-control studies suggest the involvements of dihydrolipoamide succinyltransferase (DLST) of the mitochondrial Krebs cycle and mitochondrial aldehyde dehydrogenase-2 (ALDH2) in Alzheimer's disease (AD). The DLST gene has two gene-products, one of which, a novel gene product MIRTD, mediates the molecular assembly of the cytochrome c oxidase complex whose defect has been a candidate of the causes of AD. Since levels of MIRTD mRNA in the brains of AD patients were significantly low, a decrease in MIRTD could affect energy production. ALDH2, a matrix enzyme, was found to act as a protector against oxidative stress through oxidizing toxic aldehydes, such as 4-hydroxy-2-nonenal, that are spontaneously produced from lipid peroxides. Hence, a decrease in ALDH2 activity is proposed to contribute to AD. Indeed, transgenic mice with low activity of ALDH2 exhibited an age-dependent neurodegeneration accompanying memory loss. Since amyloid β peptide has been recently shown to be present in neuronal mitochondria to decline energy production and enhance ROS production, it has become possible to link AD more closely with roles of mitochondria in the pathogenesis.
Keywords: Aldehyde, ALDH2, case-control study, cytochrome c oxidase, DLST
DOI: 10.3233/JAD-2006-9208
Journal: Journal of Alzheimer's Disease, vol. 9, no. 2, pp. 155-166, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl