Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Papers from the 29th Symposium on Naval Hydrodynamics, 26–31 August 2012, Gothenburg, Sweden
Article type: Research Article
Authors: Kandasamy, Manivannan | Peri, Daniele | Tahara, Yusuke | Wilson, Wesley | Miozzi, Massimo | Georgiev, Svetlozar | Milanov, Evgeni | Campana, Emilio F. | Stern, Frederick;
Affiliations: IIHR, Hydroscience and Engineering, University of Iowa, Iowa City, USA | INSEAN-CNR, National Research Council, Maritime Research Centre, Rome, Italy | NMRI, National Maritime Research Institute, Tokyo, Japan | NSWCCD, Naval Surface Warfare Center Carderock Division, Bethesda, MD, USA | BSHC, Bulgarian Ship Hydrodynamics Center, Varna, Bulgaria
Note: [] Corresponding author. E-mail: Frederick-stern@uiowa.edu
Abstract: The present work focuses on the application of simulation-based design for the resistance optimization of waterjet propelled Delft catamaran, using integrated computational and experimental fluid dynamics. A variable physics/variable fidelity approach was implemented wherein the objective function was evaluated using both low fidelity potential flow solvers with a simplified CFD waterjet model and high fidelity RANS solvers with discretized duct flow calculations. Both solvers were verified and validated with data for the original hull. The particle swarm optimizer was used for single speed optimization at Fr=0.5, and genetic algorithms were used for multi speed optimization at Fr=0.3, 0.5 and 0.7. The variable physics/variable fidelity approach was compared with high fidelity approach for the bare-hull shape optimization and it showed an overall CPU time reduction of 54% and converged to the same optimal design at Fr=0.5. The multi-speed optimization showed design improvement at Fr=0.5 and 0.7, but not at Fr=0.3 since the design variables were obtained based on sensitivity analysis at Fr=0.5. High fidelity simulation results for the optimized barehull geometry indicated 4% reduction in resistance and the optimized waterjet equipped geometry indicated 11% reduction in effective pump power required at self-propulsion. Verification was performed for the optimized hull form and its reduction in powering will be validated in forthcoming experimental campaign.
Keywords: Simulation-based design, ship design, waterjet propulsion, variable fidelity
DOI: 10.3233/ISP-130098
Journal: International Shipbuilding Progress, vol. 60, no. 1-4, pp. 277-308, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl