Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Papers from the 29th Symposium on Naval Hydrodynamics, 26–31 August 2012, Gothenburg, Sweden
Article type: Research Article
Authors: Hsiao, C.-T.; | Wu, X. | Ma, J. | Chahine, G.L.
Affiliations: Dynaflow, Inc., Jessup, MD, USA
Note: [] Corresponding author. E-mail: Ctsung@dynaflow-inc.com
Abstract: Free surface disruption, bubble entrainment, and resulting bubbly wake due to a stationary and moving horizontal jets plunging into a quiescent liquid were studied both numerically and experimentally. The moving jet wake showed significantly different flow characteristics than the stationary jet wake. High speed videos revealed that large vortical structures with entrapped air were generated periodically from the horizontal plunging jet. Each vortical air pocket broke up into multiple bubbles due to local shear flows as it returned toward the free surface and moved downstream. The frequency of the air pocket occurrence was analyzed and found to scale with the plunging jet flow and geometry conditions. The plunging dynamics was simulated with an Eulerian/Lagrangian one-way coupled two-phase flow model, which included a Level-Set method and a sub-grid bubble entrainment model. These captured free surface dynamics and predicted the bubble generation and entrainment. The flow structures, velocity field, and overall bubble spreading region near the plunging region were well captured by the numerical model. Further improvement on downstream wake flow is being sought through two-way coupling between the two phases since the one-way coupling does not account properly for the effective density.
Keywords: Plunging jet, bubble entrainment, two-phase flow model
DOI: 10.3233/ISP-130093
Journal: International Shipbuilding Progress, vol. 60, no. 1-4, pp. 435-469, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl