Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sumesh, Sreenithya* | Krishna, Aneesh
Affiliations: School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, WA, Australia
Correspondence: [*] Corresponding author: Sreenithya Sumesh, School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Western Australia, Australia. E-mail: s.sumesh@curtin.edu.au.
Abstract: In this paper, we discuss the role of microgrids as a “prosumer”. Microgrids are used to provide locally generated power (energy), and this concept is becoming increasingly prominent with time. Microgrids have added economic value when assuming the role of “prosumer” or “group of prosumers”. A new outlook in managing prosumers connected to the energy sharing network has led to the creation of prosumer coalition groups, which can subsequently manage numerous goals in microgrid energy systems. For achieving prosumer energy goals, Goal-Oriented Requirements Engineering (GORE) is deployed in this work. Hence, the purpose of this research is to develop prosumer coalition-GORE artefacts, strategising GORE players, modelling non-functional requirements and ensuring sustainable requirements engineering management in the microgrid energy system. In this research, an i* goal model has been used to design a payoff function based on the game theory concept. The key to the pricing function is its fair distribution of payoffs depending on their surplus energy generation, thus providing optimum satisfaction to the buyer. With the objective of maximising the profits earned by prosumers through intra-microgrid energy trading, this paper also designs multi-objective functions to provide optimal value by using the i* goal model. By integrating Java with the IBM CPLEX optimisation tool, a simulation model based on the proposed method was developed and analysed. The results show that the proposed approach yields better outcomes when meeting the requirements of fairness and efficiency, reducing the intermittency effect of generation through renewable resources.
Keywords: Requirements engineering, goal models, multi-objective optimisation, decision-making, non-functional requirements
DOI: 10.3233/KES-230902
Journal: International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 27, no. 1, pp. 25-54, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl