Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wong, Tak-Lam
Affiliations: Department of Comptuer Science, Caritas Institute of Higher Education, Hong Kong, China. E-mail: tlwong@cihe.edu.hk
Abstract: Markov Logic Networks (MLN) is a unified framework integrating first-order logic and probabilistic inference. Most existing methods of MLN learning are supervised approaches requiring a large amount of training examples, leading to a substantial amount of human effort for preparing these training examples. To reduce such human effort, we have developed a semi-supervised framework for learning an MLN, in particular structure learning of MLN, from a set of unlabeled data and a limited number of labeled training examples. To achieve this, we aim at maximizing the expected pseudo-log-likelihood function of the observation from the set of unlabeled data, instead of maximizing the pseudo-log-likelihood function of the labeled training examples, which is commonly used in supervised learning of MLN. To evaluate our proposed method, we have conducted experiments on two different datasets and the empirical results demonstrate that our framework is effective, outperforming existing approach which considers labeled training examples alone.
Keywords: Markov logic networks wrapper adaptation, web mining, text mining, machine learning
DOI: 10.3233/KES-140289
Journal: International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 18, no. 2, pp. 91-98, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl