Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Crockett, K.; * | Bandar, Z. | O'Shea, J. | Fowdar, J.
Affiliations: The Intelligent Systems Group, Department of Computing and Mathematics, The Manchester Metropolitan University, Chester Street, Manchester, M15 9GD, UK
Correspondence: [*] Corresponding author. Tel.: +44 161 247 1497; Fax: +44 161 247 1483; E-mail: K.Crockett@mmu.ac.uk
Abstract: This paper introduces a novel Fuzzy Numeric Inference Strategy (FNIS) which induces fuzzy trees that can be applied to data domains where the outcome can be either numeric or discrete. The methodology applies the principles of fuzzy theory to pre-generated crisp decision trees in order to soften the sharp decision boundaries that are inherent in such induction techniques. Introducing fuzziness around a tree node allows classification knowledge to be represented more naturally and in-line with human thinking thus creating more robust trees when handling imprecise or conflicting information. The FNIS methodology first extrapolates rules from crisp decision trees. Each attribute is then fuzzified using a Genetic Algorithm (GA) to determine the size of the fuzzy partitions around each tree node automatically. A fuzzy decision tree is then created using a one-to-one mapping and a genetically optimised pre-selected fuzzy inference technique is used to combine all information throughout the tree. FNIS uses two strategies for defuzzification, depending on the type of the outcome variable. For discrete values the traditional centre of gravity approach is adopted, whilst for predicting numeric outcomes a novel method of defuzzification is proposed. CHAID is a successfully proven algorithm for inducing decision trees which can solve both classification and regression problems. It is used to illustrate the creation of fuzzy trees through the proposed strategy. A series of experiments is carried out to compare the performance of crisp trees with FNIS induced fuzzy trees, using real world datasets. The results are shown to compare favourably with other fuzzy and crisp decision tree algorithms. The fuzzy trees are also shown to be more robust leading to improved classification/prediction over crisp trees.
DOI: 10.3233/KES-2008-12401
Journal: International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 12, no. 4, pp. 255-269, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl