Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Okoye, Kingsley* | Naeem, Usman | Islam, Syed
Affiliations: School of Architecture Computing and Engineering, University of East London, London, UK
Correspondence: [*] Corresponding author: Kingsley Okoye, School of Architecture Computing and Engineering, University of East London, London, UK. E-mail: K.Okoye@uel.ac.uk.
Abstract: Semantic-based process mining is a useful technique towards improving information values of process models and analysis by means of conceptualization. The conceptual system of analysis allows the meaning of process elements to be enhanced through the use of property characteristics and classification of discoverable entities, to generate inference knowledge that can be used to determine useful patterns and predict future outcomes. The work in this paper presents a Semantic-Fuzzy mining approach that makes use of labels within event log about real-time process to provide a method which allows for mining and improved process analysis of the resulting process models through semantic – annotation, representation and reasoning. Qualitatively, the study shows by using a case study of Learning Process – how data from various process domains can be extracted, semantically prepared, and transformed into mining executable formats to support the discovery, monitoring and enhancement of real-time domain processes through further semantic analysis of the discovered models. Also, the paper quantitatively assess the level of accuracy of the classification results to predict behaviours of unobserved instances within the process knowledge-base by determing which traces are fitting or not fitting the discovered model by using a training set and test log for the cross-validation experiment. Accordingly, the work looks at the sophistication of the proposed semantic-based approach and the discovered models, validation of the classification results and their influence compared to other existing benchmark techniques and algorithms for process mining. The experimental results and data validation ends with the supposition that a system which is formally encoded with semantic labelling (annotation), semantic representation (ontology) and semantic reasoning (reasoner) has the capability to lift process mining analysis and outcomes from the syntactic level to a much more conceptual level, resulting in a mining approach that is able to induce new knowledge based on previously unobserved behaviours and a more intuitive and easy way to envisage the relationships between the process instances found within the available event data logs and the discovered process models.
Keywords: Process mining, process modelling, semantics, annotation, ontology, fuzzy models, event logs
DOI: 10.3233/HIS-170243
Journal: International Journal of Hybrid Intelligent Systems, vol. 14, no. 1-2, pp. 67-98, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl