Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Roy, Arighna* | Ludwig, Simone A.
Affiliations: Department of Computer Science, North Dakota State University, Fargo, ND, USA
Correspondence: [*] Corresponding author: Arighna Roy, Department of Computer Science, North Dakota State University, Fargo, ND, USA. E-mail: arighna.roy@ndsu.edu.
Abstract: With the surge of computational power and efficient energy consumption management on embedded devices, embedded processing has grown exponentially during the last decade. In particular, computer vision has become prevalent in real-time embedded systems, which have always been a victim of transient fault due to its pervasive presence in harsh environments. Convolutional Neural Networks (CNN) are popular in the domain of embedded vision (computer vision in embedded systems) given the success they have shown. One problem encountered is that a pre-trained CNN on embedded devices is vastly affected by Silent Data Corruption (SDC). SDC refers to undetected data corruption that causes errors in data without any indication that the data is incorrect, and thus goes undetected. In this paper, we propose a software-based approach to recover the corrupted bits of a pre-trained CNN due to SDC. Our approach uses a rule-mining algorithm and we conduct experiments on the propagation of error through the topology of the CNN in order to detect the association of the bits for the weights of the pre-trained CNN. This approach increases the robustness of safety-critical embedded vision applications in volatile conditions. A proof of concept has been conducted for a combination of a CNN and a vision data set. We have successfully established the effectiveness of this approach for a very high level of SDC. The proposed approach can further be extended to other networks and data sets.
Keywords: Silent data corruption, CNN, AlexNet, association rule mining
DOI: 10.3233/HIS-200278
Journal: International Journal of Hybrid Intelligent Systems, vol. 16, no. 3, pp. 177-187, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl