Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Fan, Xinyua; | Zhu, Yanbinga
Affiliations: [a] School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, China
Correspondence: [*] Corresponding author: Xinyu Fan, School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, China. E-mail: fanxy@just.edu.cn
Abstract: The composite electromagnetic linear actuator features a co-axial integrated design that merges the moving coil and moving iron actuator types. This design leads to significant interactions among electrical, magnetic, and thermal fields during operation, which in turn affect energy consumption and temperature increases. To further improve the material utilization rate of the actuator and optimize its comprehensive performance, such as force density and temperature rise, a multi-physical field collaborative optimization method was proposed. First, the energy consumption and temperature rise mechanisms of the actuator were analyzed. The bidirectional coupling relationships of multi-physical fields during its operation are studied. Simulations and experiments were conducted to establish the rules governing the spatiotemporal evolution of energy consumption and temperature fluctuations under standard operational conditions. Based on this, a system-level collaborative optimization model for the actuator was established. Sensitivity analysis helped segregate the design variables into system-level and independent categories. Subsequently, using a multi-objective genetic algorithm, the optimal parameter settings were determined. The optimization results revealed that the force constant of the main driving components increased by 5.4%, and the average temperature of the coil decreased by 6.3%; additionally, the starting force of auxiliary components increased by 2.3%, and the temperature of the yoke decreased by 0.8%.
Keywords: Composite electromagnetic linear actuator, multi-physical field, collaborative optimization, temperature rise characteristics
DOI: 10.3233/JAE-230428
Journal: International Journal of Applied Electromagnetics and Mechanics, vol. Pre-press, no. Pre-press, pp. 1-21, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl