Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Shen, Yanpinga | Liu, Ninga; | Sun, Minglianga | Wang, Biaobiaoa | Liang, Yuxiaa
Affiliations: [a] School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
Correspondence: [*] Corresponding author: Ning Liu, School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. E-mail: nliu@njust.edu.cn, liunieng@gmail.com
Abstract: Permanent magnet eddy current brake (PMECB) with high damping performance is widely used in engineering vibration suppression and braking. In this study, based on the braking dynamics of PMECB under impact load, the analysis method related to the damping characteristics are established, including a static magnetic model with flux leakage, a uniform damping force model with demagnetization effect and skin effect, and an acceleration damping force model with magnetic field distortion. The comparison of the analysis method, numerical simulation and experimental results verifies that the analysis method can reproduce the damping law under impact load. The results show that the maximum displacements of the analysis method and numerical simulation deviate from the experimental results within 3%. The analysis method can complete the calculation of the damping characteristics within a few seconds. The variations of the thickness, conductivity of the conductive cylinder, and air gap thickness have significant effects on the nonlinear and critical characteristics of the velocity-damping force curve, which can be corrected by changing the coefficients in the analysis method. In summary, the proposed analysis method can provide insights for rapid engineering design and optimization calculation of the PMECB by its completeness, accuracy, adaptability and rapidity.
Keywords: Analysis method, eddy current brake, permanent magnets, impact load, numerical simulation
DOI: 10.3233/JAE-220194
Journal: International Journal of Applied Electromagnetics and Mechanics, vol. 74, no. 2, pp. 101-121, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl