Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected papers from the Heating by Electromagnetic Sources Conference 2013 (HES-2013)
Guest editors: Egbert Baake, Paolo Di Barba, Fabrizio Dughiero and Michele Forzan
Article type: Research Article
Authors: Spitans, Sergejsa; b; * | Baake, Egberta | Nacke, Bernarda | Jakovics, Andrisb
Affiliations: [a] Institute of Electrotechnology, Leibniz University of Hannover, Hannover, Germany | [b] Laboratory for Mathematical Modelling of Environmental and Technological Processes, University of Latvia, Riga, Latvia | Leibniz University of Hannover, Hannover, Germany | University of Pavia, Pavia, Italy | University of Padua, Padua, Italy
Correspondence: [*] Corresponding author: Sergejs Spitans, Institute of Electrotechnology, Leibniz University of Hannover, Wilhelm-Busch Str. 4, D-30167 Hannover, Germany. Tel.: +49 511 762 5116; Fax: +49 511 762 3275; E-mail: spitans@etp.uni-hannover.de
Abstract: On account of ANSYS Classic, ANSYS Fluent and ANSYS CFX-Post external coupling a new approach for joined simulation of liquid metal flow, free surface dynamics and electromagnetic (EM) field in induction furnaces is developed. The model is adjusted for the case of EM levitation and extended on 3D consideration with application of standard k-ω Shear Stress Transport (SST) or précised Large Eddy Simulation (LES) turbulence description. Calculated steady state free surface shapes of molten metal are compared to other models and experimental measurements in traditional and EM levitation induction furnaces. Calculated free surface dynamics of melt is compared to analytical estimation of free surface oscillation period. Parameter studies performed in ICF and conventional EM levitation setup briefly illustrate capabilities of the model and demonstrate the influence of current, frequency, surface tension and viscosity on free surface dynamics and steady shape of the melt in 2D approximation. Finally, full 3D calculation of free surface dynamics in ICF using k-ω SST and LES turbulence models is performed and the impact of turbulence model on meniscus is discussed.
Keywords: Numerical simulation, electromagnetic induction furnace, electromagnetic levitation, two-phase turbulent flow, free surface
DOI: 10.3233/JAE-141757
Journal: International Journal of Applied Electromagnetics and Mechanics, vol. 44, no. 2, pp. 171-182, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl